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Abstract— Loop closure detection (LCD) can effectively cor-
rect errors in visual odometry. It is thereby a critical part in
robotic visual simultaneous localization and mapping (SLAM)
system, which is widely used in modern robotic systems such
as sweeping robots and drones. In this paper, we propose a
transformer-based loop closure detection algorithm (TLCD),
which employs a distillation transformer as backbone to extract
global features, and is combined with a sequence matching
as back-end processing of principal component analysis (PCA)
algorithm. TLCD can accurately provide Precision-Recall curve
based on several public datasets including CityCentre and New-
College datasets. Results show that TLCD’s average accuracy
is up to 16.91% higher than the traditional LCD method. It
is also about 3.18% higher accuracy than the state-of-the-art
convolutional neural network (CNN) based LCD method.

I. INTRODUCTION

With the continuous introduction of robots into people’s
life, the demand for intelligent robots such as sweeping
robots and drones is becoming higher and higher. How to
build a map of the environment and localize the agent within
the environment have become a hot research field. Then
SLAM [1] technology allows the simultaneous localization
and navigation of robots without prior environmental in-
formation. The robot senses the environment and estimates
its own position. Lidar SLAM technology has been very
mature [2]. However the vision-based SLAM is still in the
research stage and has extremely high research value.

After proposing the advanced visual odometry (VO) sys-
tem named An Attentive Tensor-compressed LSTM Model
with Optical Flow Features for Monocular Visual Odometry
(ATFVO) [3], we started to focus on another important part
of SLAM, loop closure detection (LCD) [4], which is mainly
used to detect whether the robot returns to the position it
once passed during the movement. The importance of LCD
is to eliminate cumulative error. The cumulative error refers
to the continuous accumulation of error generated when the
visual odometer estimates the trajectory in SLAM, resulting
in cumulative drift between the estimated trajectory and the
actual trajectory. In order to make SLAM more real-time,
the accuracy of the odometer is often sacrificed, leading to
even higher accumulated.

Existing loop closure detection methods have been proved
to be unable to achieve efficient and accurate prediction
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Fig. 1. Modules for different LCD algorithms

of the true closed-loop, as shown in Fig.1. At present,
most LCD is carried out through the comparison of image
feature similarity between frames. The traditional methods
are mostly based on the appearance of the same scene,
using artificial markers of scene image feature extraction of
feature points. This method works well when environment
appearances of the scene are constant , such as indoor scene.
But for the environment of changeable outdoor scene, this
method lacks certain robustness.

Recently, with the development of deep learning, LCD
using deep learning method has become a popular trend.
Convolutional neural network (CNN) [5] is the most widely
used backbone. Specifically, pre-trained mode is trained to
extract image features. This method can produce feature
expression with more information, followed by improved
average accuracy and robustness of the LCD.

Transformer [6] has changed the world of machine learn-
ing since it was introduced in the field of natural language
processing (NLP). Subsequently, Dosovitskiy et al. [7] ap-
plied Transformer structure to computer vision and proposed
Vision Transformer (ViT). It achieved excellent results on
many datasets, compared with the most advanced convolu-
tional neural networks at present. This shows the potential
of Transformer to replace and surpass traditional CNN in
computer vision.

In this paper, a vision transformer and sequence matching
loop closure detection system called TLCD is proposed.
To summarize, this paper makes the following four main
contributions:

1) Feature extraction of RGB images with Transformer,
generating image features required by the back end of
loop closure detection.

2) Training transformer using Places365 [8] to get the
weight of the scene classification.

3) Sequence matching is designed at the back end of loop
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closure detection for improving the average accuracy.
4) The loop closure detection proposed by us achieves

competitive average accuracy.
The structure of the article is as follows. Section II intro-

duce related works in this filed. Section III introduces the
framework of the proposed model, its details and mathemat-
ical principles. Section IV presents the relevant experiments
and results, as well as our analysis of the results. Section
V summarizes this work and discusses aspects of this work
that motivate future research.

II. RELATED WORK

In this section, we touched on some related works done
by the predecessors. For loop closure detection, there are
great differences between traditional methods and deep
learning-based methods. Recently, Transformer has shown
great potential in the visual field, and many researchers have
proposed many different efficient models.

A. Loop Closure Detection

In traditional loop closure detection methods, the most
commonly used algorithm is Bag-of-Words (BoW) [9]. This
algorithm is based on a known word bag and obtains a
dictionary of a certain size through k-means and other
regression operations on a large number of data, in which
each ”Word” represents a kind of feature. The model is then
used to characterize the image features. This approach has
the advantage of being efficient in practice, but for large
dictionary, storage becomes a problem. In the process of
obtaining the dictionary, it is necessary to get the features
from the existing images. Traditional methods mainly rely
on artificial features to extract the information of scene
images. Key point features are commonly used, such as Scale
Invariant Feature Transform (SIFT) [10], which is a local
feature descriptor with good stability and scale invariance.
Speedup Robust Features (SURF) [11] is also a robust
descriptor of local feature points. It is based on scale space
and can maintain invariance for image scaling, rotation,
and other transformations. The FAB-Map [12] algorithm
proposed by Cummins et al. used SURF features and has
achieved good results. However, due to the huge cost of
computation, they are not suitable for real-time applica-
tion, especially being applied to edge devices with limited
computing capacity. In order to solve this problem, binary
feature extraction algorithms emerged later. For example, the
FAST Detector [13] method combined with Binary Robust
Independent Elementary Features (BRIEF) [14] descriptor
was proposed. FAST can quickly search out potential feature
points in a graph. BRIEF is a feature descriptor. Although it
does not have the features of rotation and scale invariance,
its computational complexity is low, and it has high speed.
To overcome its disadvantages, algorithms such as Oriented
FAST and Rotated BRIEF (ORB) [15] and Binary Robust
Invariant Scalable Keypoints (BRISK) [16] appeared.

In recent years, many methods based on deep learn-
ing have been proposed in computer vision. Because deep
learning can learn deeper features of images, rather than

traditional appearance features, it is more robust. Because
of their outstanding performance in the above fields, they
are also used in LCD.

First, researchers usually use the fully trained convolu-
tional neural network (CNN) pre-training model to compare
the extracted feature vectors and calculate the similarity
matrix to get the similarity relationship between different
frames, so as to judge whether it is a closed loop. Chen
et al. [17] proposed a multi-scale deep feature fusion based
LCD scheme. AlexNet [18], pre-trained on ImageNet [19],
is also used as the feature extraction network. As pro-
posed by Xia et al. [20], cascading deep learning network
(PCANet) [21] is used to extract image features for com-
parison. Subsequently, Xia et al. [22] compared the LCD
system based on traditional feature extraction with those
based on CNN, including many famous models, such as
PCANet [21], AlexNet [18], CaffeNet and GoogleNet [23].
The results show that the latter has higher average accuracy
than the former when using the same test dataset, and has a
great advantage in running time. However, the problems are
also obvious. Firstly, the average accuracy of the system is
not high, which can not meet the requirements of practical
application. Secondly, in the face of some dynamic shielding
objects (such as cars on the road, indoor pedestrians, etc.),
its robustness is poor. In addition, when the environment
changes (such as rain, night, etc.), the system will have worse
detection effect.

The second is based on autoencoder and unsupervised
learning. Visual loop closure detection based on autoencoder
proposed by Merril et al. [24] is realized using unsupervised
deep neural network. They add random noise to the training
input and simulate the natural viewpoint change caused by
robot motion by random projection transformation. They
also used histogram of Oriented Gradients (HOG) [25] to
generate illumination invariance and geometric features, and
then had the encoder generate HOG descriptors. However,
the autoencoder is unable to show which particular frame
matches the current image. Instead, it only tells whether the
current position has been accessed.

B. Self-Attention and Transformer in Vision

Transformer achieved significant improvements when it
was first applied to NLP. Vaswani et al. [6] proposed Trans-
former based on attention mechanism for machine trans-
lation and English constituency parsing tasks. In addition
to this, Transformer has shown revolutionary performance
improvements in the CV space since the end of 2020. Vision
Transformer (ViT) [7] is a model proposed by Dosovitskiy
et al. that applies Transformer in image classification, and
many subsequent works are improved based on ViT. The
idea behind ViT is simple: the image is directly divided into
patchs of fixed size, and then patch embedding is obtained
by linear transformation, which is similar to NLP words and
word embedding. Since Transformer input is a sequence of
token embeddings, the patch embeddings of the image can be
sent to Transformer for feature extraction and classification.
Since ViT, the research on Vision Transformer has been in
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Fig. 2. Transformer-based LCD overall architecture

a blowout. Data-efficient image Transformers (DeiT) [26]
was proposed to solve the problem of huge training data
and the difficulty of setting hyperparameters in ViT. It uses
data augmentation and distillation to significantly improve
the performance of ViT model. Compared with ViT, Pyra-
mid Vision Transformer (PVT) [27] introduces a pyramid
structure similar to CNN, making PVT as backbone applied
in dense prediction tasks. Finally, a new model named
Swin Transformer [28], has broken records in many tasks,
making Transformer structures become the new mainstream
of vision.

III. TLCD FRAMEWORK

In this section, we will elaborate on the framework of
TLCD system in detail, and then clearly explain the prin-
ciple of each part. It includes feature extractor and back-
end sequence matching. The feature extraction part mainly
adopts pre-trained visual Transformer model and dimensional
reduction. We give up the traditional individual comparison
for each frame, but create the sequence matching method to
improve the system effect.

A. System Framework

The architecture of the whole system is shown in Fig.2.
The camera carried by the robot keeps getting images of the
current position. We need to judge whether there is a closed
loop at this position. We resize each of the input raw images
in the sequence to the size of 224×224×3. Each image is
then fed into a feature extractor, during which the image is
passed through a pre-trained Transformer model. For each

image, an original feature map is generated. Because the
number of parameters of the original feature vectors are too
large, which affects the real-time performance of the system,
we conduct principal component analysis (PCA) [29] on
them and finally obtain the feature vector of each image,
with the size 1×1000. Then we use these feature vectors to
calculate the similarity according to the sequence and obtain
the difference matrix, which corresponds to the similarity
information between each image and each previous sequence.
Finally, by artificially setting a certain threshold value, the
difference matrix is used to judge whether there is a closed
loop , and the position is obtained.

B. Transformer Based Feature Extractor

The feature extractor in the front end only aims to get a
description vector of the image. The application environment
of SLAM is generally some scene pictures, so we can natu-
rally simplify the problem into using transformer to achieve
scene classification, and then remove the classification header
from the obtained model to obtain the feature representation
of the scene image.

Transformer has superior ability to encode and decode
words, and can be considered a more advanced bag-of-words
model. LCD tasks based on traditional methods usually
convert images to words, use words to represent an image,
and then compare the image’s similarity. The transformer
method based on the advanced bag-of-words model is similar
in principle to the traditional method. We found through
experimental results that it has a encoding ability that is more
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suitable for LCD tasks. The requirement of the LCD task
is to compare whether the scenes at the two positions are
consistent. The CNN-based algorithm tends to be consistent
in each feature, and does not show obvious advantages in
dynamic scenes. When the transformer algorithm is used
in the case of occluding part of the picture, it can still
show relatively good coding classification ability. Next, the
flow and mathematical principles of the algorithm will be
introduced in detail.

As shown in Fig.2, for an resized image x ∈
RH(224)×W (224)×C(3) from dataset, it is first divided into
M(16× 16) patches with fixed size L(14)×L(14), namely
M = H×W

L2 . After considering the channel, the image is trans-
formed into a list of input xL ∈ RM×(L2×C). A D dimensional
class embedding is added to the list after embedding as
shown in formula(1), which is used as input to transformer
encoder after positional encoding. The transformer encoder
module uses the original structure.

T0 = [xclass;x1
l Emb;x2

l Emb; ...;xN
l Emb]+Embpos (1)

T ′
l = MSA(LN(Tl−1))+Tl−1 (2)

Tl = MLP(LN(T ′
l ))+T ′

l (3)

y = PCA(LN(T 0
L )) (4)

The attention mechanism relies on three trainable parame-
ters of (query, key, value) to build. The input x is multiplied
by the weight W q to get a query vector q ∈ Rt . Then the
query vector uses inner products to match against a list of
key vectors k ∈ Rk, and the outputs K ∈ Rk×d are scaled
and normalized by

√
d. The output of the final soft attention

is the result of the previous step multiplied by v ∈ Rk×d .
The calculation process of the attention can be seen from
formula(5).

Attention(Query,Key,Value) = So f tmax(
QKT
√

d
)V (5)

Vaswani et al. [6] propose a self-attention layer. A sequence
of input vectors X multiply weight to get three important
parameter (query, key, value): Q = XW Q, K = XW K , V =
XWV . Finally, a multi-head self-attention (MSA) mechanism
with different weight is formed through a single self-attention
mechanism. The input apply h self-attention functions to get
different outcome. Each head calculates the outcome by a
sequence of RM×d . The final multi-head attention result is
unified the dimension M ×D from M × dh by the Forward
Neural Network layer.

C. Sequence matching

Mature LCD often compares the similarity between feature
vectors of single images one by one to judge whether it
is closed loop, but this ignores very important sequence
information. What we do is to use that information.

First of all, we need to get a difference matrix D, which is
used to represent the similarity between each picture. Here,
cosine similarity is used:

similarity = cos(θ) =
Pi ·Pj

||Pi|| ||Pj||
(6)

Fig. 3. Part of the LCD Dataset False Matching

TABLE I
CLASSIFICATION OF LOOP CLOSURE DETECTION RESULTS

P
GT Loop Not Loop

Loop True Positive (TP) False Positive (FP)
Not Loop False Negative (FN) True Negative (TN)

D(i, j) = norm(1− similarity) (7)

where Pi and Pj respectively represent the feature vectors
of the two images to be compared, and norm represents
the normalization operation. In order to make the difference
matrix more obvious, we also do local contrast enhancement.

For the current image Pcurrent to be detected, there may
be a sequence matching with its sequence, but the length of
the sequence is not fixed because the speed of the robot
passing through the same place is different, so we set
different speed (vmax-vmin) for matching. For each starting
image we set in the database, we apply different speeds to
it, generating a potential matching sequence. By calculating
the total difference value of each sequence, the minimum
total difference value of all speeds is finally obtained, which
is the potential closed loop.

IV. EXPERIMENTS

In this section, we will clearly illustrate the effect of TLCD
through a series of experiments. We’ll start with the datasets
we used, including training transformer and evaluating loop
closure detection. Then we go through the details of how we
train the transformer model on the scene dataset Places365,
and the results of the training, and compare it with other
CNN-based methods. Next, we combine the sequence match-
ing algorithm to the trained Transformer model with achieve
loop closure detection, evaluate its effect, compare with
the state-of-the-arts algorithm and test the system average
precision.
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Fig. 4. PR curves of TLCD in CityCentre and NewCollege Compared with
Other Methods

A. Datasets

Places365-standard [8] is a large dataset created for tasks
such as scene recognition. There are 365 categories, in-
cluding indoor and outdoor scenes, containing 1.8 million
images. Each category has 50 images for the validation set
and 900 images for the testing set. In this paper, we will use
this dataset to train the visual transformer.

In this paper, two public datasets, NewCollege and City-
Centre [12], collected by Mobile Robotics Group of Oxford
University, are used for test experiments. In these datasets,
the robot walks along a certain route in an outdoor environ-
ment, and the data is collected by two cameras on both sides
of the robot every 1.5 seconds. As the most authoritative
datasets in the field of loop closure detection, it contains
real closed-loop information and can effectively test the sys-
tem performance. Among them, the dataset of NewCollege
contains 2146 images, and the dataset of CityCentre contains
2474 images, each with a size of 640×480×3. In these two
datasets, the groundtruth of the closed loop is provided to
the users in the form of matrix GT . The two dimensions of
the matrix are the same data index. If frame i and frame j
(i> j) are closed loop, then the corresponding GT (i, j) is 1;
otherwise 0.

B. Training on Places365

Since the LCD dataset is too small to train a deep learning
model from scratch, we need to train it on a large scene
classification dataset based on the transformer, so that it has

Fig. 5. Loop matrix of TLCD in CityCentre and NewCollege

TABLE II
TRAINING RESULTS OF DIFFERENT MODELS ON PLACES365

Method AlexNet GoogLeNet VGG ResNet Transformer
top1 53.31% 53.59% 55.19% 54.65% 53.28%
top5 82.75% 84.01% 85.01% 85.07% 84.04%

the ability to encode and classify scenes.
Transformer are more difficult to train than CNN-based

networks, and the state-of-the-art performance on ImageNet
networks is the result of pre-training on private datasets. The
CNN-based network has official open source model weights
on the Places365 dataset, so we take the distillation method
to train our transformer model, using ResNet50 as the teacher
network. The final training results are shown in TABLE II.
Our model shows the same advantages as the CNN-based
model in classification results, but from the back end, the
features extracted by the transformer are more suitable for
use in LCD scenes.

C. Loop Closure Detection Results

In loop closure detection, when it comes to evaluation,
we use Precision-Recall Curve (P-R Curve) and average
accuracy.

There are four different situations in LCD, as shown in
TABLE I. False positive is when two images look similar
but are not actually the same scene. False negative is when
two images are actually the same scene, but it is not detected.
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TABLE III
AVERAGE ACCURACY (AP) OF TLCD COMPARED WITH OTHER

METHODS

TraditionalFeature BoW GIST Transformer

NewCollege 62.38% 60.82% 79.29%
CityCentre 72.64% 69.79% 89.05%

CNN-Based
PCANet CaffeNet AlexNet GoogLeNet VGG
73.76% 74.04% 78.92% 66.47% 78.26%
81.38% 82.80% 85.87% 74.19% 82.13%

The samples are shown in Fig.3. We want false positives and
false negatives as few as possible, and the other two as many
as possible. So we define Precision and Recall as:

Precision =
T P

T P+FP
(8)

Recall =
T P

T P+FN
(9)

It can be seen from the above formula that it is impossible
for an algorithm’s to have high Precision and Recall at
the same time, so P-R curve is used to characterize the
relationship between them. The larger the area enclosed by
the generated curves, the better the algorithm performance.
The area enclosed by the P-R curve can be defined as average
precision (AP):

AP =
∫ 1

0
P(r)dr (10)

where P(r) is the function of the P-R Curve.
We resize each image in the datasets to 240×240×3 in

sequence, then normalize and input into the pre-trained
vision transformer model. The obtained feature map was
reduced to 1×1000 feature vector by PCA. The difference
matrix is obtained by calculating the cosine similarity of
these vectors. Finally, by using sequence matching algorithm,
we get the closed-loop prediction results.

In the experiment, we calculate a series of Precision and
Recall combinations by setting different thresholds for the
difference values, thus drawing the P-R Curve. At the same
time, we tested other methods and drew them together, as
shown in Fig.4. We find that the P-R curve of TLCD is far
better than that of traditional methods, and also better than
that of many CNN methods.

We find that for CityCentre, when recall value is around
60% and precision value is close to 100%, loop closure
detection results are the most ideal. For NewCollege, results
are the best when Recall is around 40% and Precision is
close to 100%. The experimental results are shown in Fig.5,
where the X-axis represents the image being processed and
the Y-axis represents the image to be matched.

Finally, we calculate the AP of TLCD and compare it with
those of traditional artificial features (BoW, GIST) and CNN
features (PCANet, CaffeNet, AlexNet, GoogLeNet, VGG),
as shown in TABLE III. In NewCollege, TLCD is 16.91%
higher than traditional BoW and 18.47% higher than GIST.

TABLE IV
COMPARATION OF THE MODEL SIZE BETWEEN DIFFERENT MODELS

Name Structure Size
AlexNet CNN >200MB

VGG CNN >500MB
ViT Transformer >300MB

TLCD Distilled Transformer 86MB

TABLE V
TIME CONSUMPTION OF TLCD WHEN EVALUATE ON

PC(CPU)(S/FRAME)

CityCentre NewCollege
Feature

Extractor Total LCD Feature
Extractor Total LCD

TLCD 0.948 1.075 1.066 1.186

Compared with the CNN method, TLCD is 5.53% higher
than PCANet, 5.25% higher than CaffeNet, 12.82% higher
than GoogLeNet, 1.03% higher than VGG, and 0.37% higher
than AlexNet. In CityCentre, TLCD is 16.41% higher than
traditional BoW and 19.26% higher than GIST. Compared
with the CNN method, TLCD is 7.67% higher than PCANet,
6.25% higher than CaffeNet, 3.18% higher than AlexNet,
14.86% higher than GoogLeNet, and 6.92% higher than
VGG. In conclusion, the performance of TLCD is superior
to existing LCD methods.

We also tested the time performance of TLCD. As the
model size largely affects the running time and efficiency of
the system, we first record the size of different deep learning
models suitable for LCD systems. As shown in TABLE
IV, the model size of TLCD is 86MB, which is generally
lower than other models. We then test the system’s time
performance on two datasets mentioned above, expressed
as the average time of each image in the entire dataset.
We recorded the time of feature extractor and total LCD
respectively, as shown in TABLE V.

V. CONCLUSION

This paper proposes a novel loop closure detection that
employs an advanced Bag-of-Words transformer algorithm as
the front-end, combined with sequence matching and dimen-
sion reduction algorithms as the back-end. This architecture
has significant accuracy improvements on LCD evaluation
metrics when conducting experiments on LCD datasets when
compared to traditional methods. In the future work, we
will apply tensor train methods [30], and perform neural
architecture search [31] to optimize the above proposed
method on edge devices.
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