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Introduction

SLAM Simultaneous Localization
and Mapping (SLAM)
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m Introduction

Visual SLAM Process

Front-end Back- end
\ Loop Closure /
Detection

Visual Odometry (VO): Estimate the camera pose changes between adjacent sampling
1mages, so as to estimate the motion trajectory ;

Back-end Optimization: The global trajectory and map are obtained by combining and
optimizing the camera trajectory obtained by VO and loop closure detection information;

Loop Closure Detection (LCD): Determine whether the camera has a closed-loop
trajectory, that 1s, determine whether the camera has passed through the same location;

Mapping: Build a map based on the trajectory.
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Loop Closure Detection (LCD)
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“H | Modules for Different LCD Algorithms

Traditional Methods: SIFT, SURF, BoW, ORB, BRISK, etc.
CNN-based: PCANet, AlexNet, GoogLeNet, etc.
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Introduction

Contribution

This research proposes a vision transformer and sequence matching loop closure detection
system called a transformer based loop closure detection for visual SLAM (TLCD). The most

major contributions of this work are as follows:

1. Feature extraction of RGB images with transformer, generating image features required by

the back-end of loop closure detection.
2. Training transformer using Places365 to get the weight of the scene classification.

3. Sequence matching is designed at the back-end of loop closure detection for improving the

average accuracy.

4. The loop closure detection proposed by us achieves competitive average accuracy.







Transformer Based Loop Closure Detection (TLCD)
System Framework
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@ Transformer Based Loop Closure Detection (TLCD)
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@ Transformer Based Loop Closure Detection (TLCD)
Dimension Reduction & Sequence Matching
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@ Experiments and Results

Datasets
Training Dataset Places365-standard LCD Datasets CityCentre and NewCollege
Large public dataset; Small public datasets;
Scene classification; Robot carried two cameras in both side;
365 categories; 1.5 seconds per sample;
1.8 milllion images. Contain real closed loop;

CityCentre, 2474 images;
NewCollege, 2146 images;
Ground truth matrix.

NewCollege

CityCentre
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@ Experiments and Results
Knowledge Distillation in Transformer
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Original Vit is too large to Student |

work on an edge device.
As T approaches infinity, softmax output is

For Deit, it uses convolutiongl neuarl network more "soft". Therefore, a larger T can be used
as the teacher model, and train the transformer when training the student network. After
student model, and finally get best performance. training, normal T=1 was used for prediction.
. Minimize the cross entropy of the two
In TLCD, we set well trained ResNet as the distributions during training:

teacher model, and train the transformer.

C = —p'logq




@ Experiments and Results
Training Result

Table'1 Training-Results-of Different-Methods-on-Places365«

Method< Topl< TopS5«
AlexNet« 53.31%¢€ 82.75%¢
GoogLeNet« 53.5904¢ 84.01%¢<
VGG 55.19%¢ 85.01%¢
ResNet«” 54.65%< 85 (07%¢

Transformer< 53.28%+ 84.04% <




@ Experiments and Results
Precision-Recall Curve and Average Precision

PR Curve
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Table 3-Average-Accuracy (AP) of TLCD-Compared-with-Other-Methods<

\ AlexNet
GoogleNet]
TLCD

0.2 0.4 0.6 0.8
Recall

PR Curve of NewCollege

Bow
AlexNet
GoogleNet|

—— TLCD

Results<
Methods<’
NewCollege< CityCentre<’

BoWe« 62.38%¢ 72.64%<

Traditional«
GIST« 60.82%¢ 69.79%<«
PCANet« 73.76%¢< 81.38%¢«
CafteNet« 74.04% 82.80%¢
CNN-based«’ AlexNet« 78.92%¢< 85.87%«
GoogLeNet« 66.47%¢< 74.19%¢<
VGG 78.26%< 82.13%«
Transformer-based«”  Vision-Transformer< 79.29%< 89.05%<
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Recall
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Previous Images

Loop Closure Detection Result on CityCentre
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@ Experiments and Results
Model Size and Time Consumption

Table4-Comparation of the Model Size' Between Different-Model-'  Table'5 Time -Consumption-of TLCD-When Evaluate-on PC-(CPU)(S/Frame)-

Name«’ Structure<’ Size« Item< TLCD+
AlexNet« CNN« ~200MB< Feature Extractor< 0.948<
CityCentre<’
VGG CNN¢ ~500MB< Total LCD+ 1.075¢
ViTe Traisloriiere ~300MB<’ Feature Extractor<” 1.066¢
NewCollege’

TLCD< Distilled Transformer’ 86MB< Total LCD< 1.186<







@ Conclusion

In this paper, we propose a transformer-based loop closure detection algorithm
(TLCD), which employs a distillation transformer as backbone to extract global
features, and is combined with a sequence matching as back-end processing of

principal component analysis (PCA) algorithm.

Results show that TLCD's average accuracy | It is also about 3.18% higher accuracy than the

is up to 16.91% higher than the traditional state-of-the-art convolutional neural network

LCD method. (CNN) based LCD method.







